

Evidence Package Vitamin B12

Product name: Gen50 Kyck

AUST L: 461726 Review date: July 2025

Table of Contents

Table 6a: Executive Summary of Therapeutic Indications	3
Table 6b: Evidence Summary for Scientific Indications	
NDICATION 1	5
INDICATION 2	16
INDICATION 3	23
INDICATION 4	28

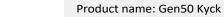

AUST L: 461726 Review date: July 2025

Table 6a: Executive Summary of Therapeutic Indications

Indication identifier	System targeted	Therapeutic indication	Required dosage	Specific/ Non-specific
COBALAMIN1	General health or body parts	 Maintain/support general health and wellbeing Maintain/support healthy growth and development 	2.4 mcg	Non-specific
COBALAMIN2	Cardiovascular system	 Aid/assist healthy red blood cell production Maintain/support red blood cell health Maintain/support blood health Maintain/support cardiovascular system health Maintain/support healthy cardiovascular system function Helps decrease/reduce homocysteine levels in healthy individuals. 	2.4 mcg	Non-specific
COBALAMIN3	Nervous system	 Maintain/support nervous system health Maintain/support nervous system function 	2.4 mcg	Non-specific

COBALAMIN4 Nutrition	 Helps prevent dietary Vitamin B₁₂ deficiency Maintain/support Vitamin B₁₂levels in the body Vitamin B₁₂ aids/assists/helps metabolism of proteins, carbohydrates and fats Aid/assist/helps protein synthesis in the body 	2.4 mcg	Non-specific
----------------------	--	---------	--------------

AUST L: 461726 Review date: July 2025

Table 6b: Evidence Summary for Scientific Indications

INDICATION 1							
Indication	Evidence reference details	Ingredient	Dosage	Patient population	Summary of findings	Balance of evidence	
		Plant/animal part and preparation	Daily dosage, frequency & method	Subject, characteristics, health condition, ages, gender, ethnicity	Include enough information to demonstrate relevance and study outcomes. Any justifications from table 4d of Checklist 4 should be included here.	'Primary supporting', 'Secondary supporting'	
 Maintain/su pport general health and wellbeing Maintain/su pport healthy growth and developme nt 	Health Canada Monographs, Health Canada, 202 3	Vitamin B ₁₂	0.14 – 1000mcg	NA	 Helps to form red blood cells. Helps to maintain/support immune function/the immune system. Helps in the normal function of the immune system. Helps in energy metabolism in the body. Helps to maintain healthy metabolism. Helps to prevent vitamin B₁₂ deficiency. Helps to prevent vitamin B₁₂ deficiency. Helps to maintain the body's ability to metabolize nutrients. 	Primary supporting	

GlobinMed, Global Information H ub on Integrated Medicine, 2021	Vitamin B ₁₂	RDI 4mcg	NA	Bichemical Pathways Primarily functions as a methyl donor, transferring methyl groups in the following: a) Vitamin B ₁₂ demethylates methyltetrahydrofolate to generate tetrahydrofolate, necessary in the	Primary supporting
				synthesis of DNA. This means B ₁₂ plays a role in the replication of the genetic code and is a growth factor in all cells of the body.	
				b) Methylcobalamin transfers a methyl group onto homocysteine, which facilitates the conversion of homocysteine to methionine.	
				Hydrogen Carrier Functions as a hydrogen carrier in hydrogen transfer reactions.	
				Nervous System Required for the synthesis of myelin, the insulation around nerves. It plays a major role in the functioning and maintenance of the nervous system.	
				Red Blood Cells Necessary for the maturation of red blood cells.	
				Metabolism	

	Involved in various aspects of protein, fat, and carbohydrate metabolism.
	Atherosclerosis Homocysteine concentrations, when elevated, are a risk factor for atherosclerotic disease. Vitamin B12 is necessary for the metabolism of homocysteine.

IIC	Vitamin D.	RDA 2.4mcg	NA	Vitamin P12 is required for present	Drimon
U.S.	Vitamin B ₁₂	NDA 2.4IIICG	INA	Vitamin B12 is required for proper	Primary
Department				red blood cell formation,	supporting
of Health and				neurological function, and DNA	
Human				synthesis. Vitamin B12 functions as	
Services.				a cofactor for methionine synthase	
(2024).				and L-methylmalonyl-CoA mutase.	
Retrieved				Methionine synthase catalyses the	
from National				conversion of homocysteine to	
Institute of				methionine. Methionine is required	
Health Office				for the formation of S-	
of Dietary				adenosylmethionine, a universal	
Supplements				methyl donor for almost 100	
website				different substrates, including DNA,	
Website				RNA, hormones, proteins, and	
				lipids. L-methylmalonyl-CoA mutase	
				. , , , ,	
				converts L-methylmalonyl-CoA to	
				succinyl-CoA in the degradation of	
				propionate, an essential	
				biochemical reaction in fat and	
				protein metabolism. Succinyl-CoA is	
				also required for haemoglobin	
				synthesis.	
				Deficiency	
				Typically, vitamin B12 deficiency is	
				treated with vitamin B12 injections,	
				since this method bypasses	
				potential barriers to absorption.	
				However, high doses of oral vitamin	
				B12 may also be effective.	
				Diz may also be effective.	
				Vitamin B12 and Health	

	Cardiovascular disease Elevated homocysteine levels have also been identified as an independent risk factor for cardiovascular disease. In the presence of insufficient vitamin B12, homocysteine levels can rise due to inadequate function of methionine synthase.
--	--

Braun, L., &	Vitamin B ₁₂	RDI 2.4mcg	NA	Main Actions	Primary
Cohen, M.				Wall Accions	supporting
Cohen, M. (2015). Vtamin B ₁₂ . In Herbs & Natural Supplements. An evidence-based guide (4th ed., pp. 1091-1101). Chatswood, NSW: Elsevier Australia.				Important cofactor Vitamin B ₁₂ is essential for the normal function of all cells. It affects cell growth and replication, the metabolism of carbohydrates, lipids and protein and is involved in fatty acid and nucleic acid synthesis. It is also involved in the production of red blood cells in bone marrow, and activates folacin coenzymes for red blood cell production. Homocysteine reduction Methylcobalamin aids in the conversion of homocysteine to methionine by the action of methionine synthase, transferring a methyl group from methylfolate (folic acid). After conversion from homocysteine, methionine is then converted to S-adenosyl-L- methionine (SAMe), important for methylation reactions and protein synthesis. Nervous system Vitamin B ₁₂ is involved in the synthesis of protein structures in	supporting
				the myelin sheath and nerve cells. As methylation is required for the production of myelin basic	

	protein, a reduction in B ₁₂ and SAMe will result in demyelination of peripheral nerves and the spinal column (subacute combined degeneration. Antioxidant capacity
	Recent studies have identified that vitamin B ₁₂ and its cobalamin-based derivatives are powerful antioxidants at pharmacological concentrations.
	Clinical Use Deficiency: treatment and prevention Traditionally, vitamin B ₁₂ supplementation has been used to treat deficiency or prevent it in conditions such as pernicious anaemia and atrophic gastritis, but special consideration should be given to the elderly, who are at high risk.
	Hyperhomocysteinaemia Vitamin B_{12} alone may not be sufficient to normalise elevated homocysteine levels. As a result, vitamin B_{12} is often recommended in combination with folic acid and vitamin B_6 in conditions for which

				homocysteine is implicated as a possible causative factor.	
Gaby, A. (2017). Vitamin B ₁₂ . In Nutritional Medicine (2nd ed., pp. 94-100). Concord, NH: Fritz Perlberg Publishing.	Vitamin B ₁₂	RDI 2.4mcg	NA	Biochemistry Vitamin B ₁₂ plays a role in DNA synthesis, red blood cell formation, homocysteine metabolism, and synthesis of S-adenosylmethionine. It is involved in the functioning of the nervous system and immune system. Clinical indications Vitamin B ₁₂ may be useful for preventing and/or treating numerous conditions, including Hyperhomocysteinemia	Primary supporting

	Gropper, S., Smith, J., & Carr, T. (2018). Water soluble vitamins: Vitamin B ₁₂ . In Advanced Nutrition and Human Metabolism (7th ed., pp. 351-358). Boston: Cengage Learning.	Vitamin B ₁₂	RDA 2.4mcg		Functions and Mechanisms of Action Two enzymatic reactions requiring vitamin B12 have been recognized in humans. One of these reactions requires methylcobalamin as a coenzyme for methionine synthase, and the other relies on adenosylcobalamin as a coenzyme for L-methylmalonyl-CoA mutase. These reactions facilitate nutrient metabolism and energy production, as well as indirectly (via interactions with folate) the synthesis of purines and pyridimidines for use in nucleic acids. Two reactions are responsible for converting homocysteine to methionine. One does not require vitamin B12. The other reaction requires methylcobalamin as a coenzyme for methionine synthase (also called homocysteine methyltransferase).	Primary supporting
--	---	-------------------------	------------	--	---	--------------------

Ther	rapeutic	Vitamin B ₁₂	RDA 2.4mcg	NA	Orally, vitamin B12 is used for	Primary
I I	earch	Vitariiii Diz			preventing and treating vitamin B12	supporting
Cent					deficiency. It is also used orally for	Supporting
(202					treating hyperhomocysteinemia,	
	min B ₁₂ .				a caming hypomemocyclemema,	
	ieved				Effectiveness	
	Natural					
Med	licines				Administering vitamin B12 orally,	
webs	site				intramuscularly, or intranasally is	
					effective for preventing and treating vitamin B12 deficiency. It	
					is commonly believed that only	
					intramuscular vitamin B12 is	
					effective for treating vitamin B12	
					deficiency. However, clinical	
					research shows that oral therapy is as effective as intramuscular	
					administration.	
					aammenadom	
					Older adults who take oral vitamin	
					B12 supplements in doses of 25-	
					37.5 mcg daily are more likely to	
					have normal vitamin B12 levels	
					than those who do not take supplements.	
					зиррієтеніз.	
					Taking vitamin B12 orally in	
					combination with folic acid, and	
					sometimes with pyridoxine	
					(vitamin B6), can reduce serum	
					concentrations of homocysteine.	

Association	Vitamin B ₁₂	RDI 2.4mcg	NA	Vitamin B12 is essential for the	Primary
of				synthesis of fatty acids in myelin,	supporting
Naturopathic				normal blood cells and in the	
Practitioners.				synthesis of DNA with folate.	
(2020).					
Vitamin B ₁₂ .				Deoxyadenosylcobalamin is	
Retrieved				essential for the conversion of L-	
from: Herb				methylmalonyl-CoA to succinyl-CoA	
Drug				which plays a part in energy	
Nutrient.				production from lipids and proteins	
				and in haemoglobin synthesis.	
				Methylcobalamin and the folate-	
				dependent enzyme, methionine	
				synthase is essential for the	
				metabolism of homocysteine to	
				methionine and may thereby	
				reduce the risk of cardiovascular	
				disease.	
				Vitamin B12 may reduce	
				homocysteine.	

INDICATION 2	INDICATION 2						
Indication	Evidence reference details	Ingredient	Dosage	Patient population	Summary of findings	Balance of evidence	
		Plant/animal part and preparation	Daily dosage, frequency & method	Subject, characteristics, health condition, ages, gender, ethnicity	Include enough information to demonstrate relevance and study outcomes. Any justifications from table 4d of Checklist 4 should be included here.	'Primary supporting', 'Secondary supporting'	
 Aid/assist healthy red blood cell production Maintain/su pport red blood cell health 	Health Canada Monographs, Health Canada, 202 3	Vitamin B ₁₂	0.14 – 1000mcg	NA	 Helps to form red blood cells. Helps in energy metabolism in the body. Helps to maintain healthy metabolism. Helps to prevent vitamin B₁₂ deficiency and to form red blood cells. 	Primary supporting	

 Maintain/su pport blood health Maintain/su 	GlobinMed, Global Information H ub on	Vitamin B ₁₂	RDI 4mcg	NA	Biochemical Pathways Primarily functions as a methyl donor, transferring methyl groups in the following:	Primary supporting
pport cardiovasc ular system health • Maintain/su pport healthy cardiovasc	Integrated Medicine, 2021				a) Vitamin B ₁₂ demethylates methyltetrahydrofolate to generate tetrahydrofolate, necessary in the synthesis of DNA. This means B ₁₂ plays a role in the replication of the genetic code and is a growth factor in all cells of the body.	
ular system function • Helps decrease/r					b) Methylcobalamin transfers a methyl group onto homocysteine, which facilitates the conversion of homocysteine to methionine.	
educe homocystei ne levels in healthy individuals.					Nervous System Required for the synthesis of myelin, the insulation around nerves. It plays a major role in the functioning and maintenance of the nervous system.	
					Red Blood Cells Necessary for the maturation of red blood cells.	
					Atherosclerosis Homocysteine concentrations, when elevated, are a risk factor for atherosclerotic disease. Vitamin	

			B12 is necessary for the metabolism of homocysteine.	
U.S. Department of Health and Human Services. (2024). Retrieved from National Institute of Health Office of Dietary Supplements website	RDA 2.4mcg	NA	Vitamin B12 is required for proper red blood cell formation, neurological function, and DNA synthesis. Vitamin B12 functions as a cofactor for methionine synthase and L-methylmalonyl-CoA mutase. Methionine synthase catalyses the conversion of homocysteine to methionine, which is required for the formation of S-adenosylmethionine, a universal methyl donor for almost 100 different substrates, including DNA, RNA, hormones, proteins, and lipids. Succinyl-CoA is also required for haemoglobin synthesis. Vitamin B12 and Health Cardiovascular disease Elevated homocysteine levels have also been identified as an independent risk factor for cardiovascular disease. In the presence of insufficient vitamin B12, homocysteine levels can rise due to inadequate function of methionine synthase.	Primary supporting

Braun, L., & Cohen, M.	Vitamin B ₁₂	RDI 2.4mcg	NA	Main Actions	Primary supporting
(2015). Vtamin B ₁₂ . In Herbs & Natural Supplements. An evidence-based guide (4th ed., pp. 1091-1101). Chatswood, NSW: Elsevier Australia.				Important cofactor Vitamin B ₁₂ is essential for the normal function of all cells. It affects cell growth and replication. It is also involved in the production of red blood cells in bone marrow, and activates folacin coenzymes for red blood cell production. Homocysteine reduction Methylcobalamin aids in the conversion of homocysteine to methionine by the action of methionine synthase, transferring a methyl group from methylfolate (folic acid). After conversion from homocysteine, methionine is then converted to S-adenosyl-L- methionine (SAMe), important for methylation reactions and protein synthesis.	
				Clinical Use Hyperhomocysteinaemia Vitamin B ₁₂ alone may not be sufficient to normalise elevated homocysteine levels. As a result, vitamin B ₁₂ is often recommended in combination with folic acid and	

				vitamin B ₆ in conditions for which homocysteine is implicated as a possible causative factor.	
Gaby, A. (2017). Vitamin B ₁₂ . In Nutritional Medicine (2nd ed., pp. 94-100). Concord, NH: Fritz Perlberg Publishing.	Vitamin B ₁₂	RDI 2.4mcg	NA	Biochemistry Vitamin B ₁₂ plays a role in red blood cell formation, homocysteine metabolism. Clinical indications Vitamin B ₁₂ may be useful for preventing and/or treating numerous conditions, including Hyperhomocysteinemia	Primary supporting

Gropper, S., Smith, J., & Carr, T. (2018). Water soluble vitamins: Vitamin B ₁₂ . In Advanced Nutrition and Human Metabolism (7th ed., pp. 351-358). Boston: Cengage Learning.	Vitamin B ₁₂	RDA 2.4mcg	NA	Functions and Mechanisms of Action Two enzymatic reactions requiring vitamin B12 have been recognized in humans. One of these reactions requires methylcobalamin as a coenzyme for methionine synthase, and the other relies on adenosylcobalamin as a coenzyme for L-methylmalonyl-CoA mutase. These reactions facilitate nutrient metabolism and energy production. Two reactions are responsible for converting homocysteine to methionine. One does not require vitamin B12. The other reaction requires methylcobalamin as a coenzyme for methionine synthase (also called homocysteine methyltransferase).	Primary supporting
---	-------------------------	------------	----	---	--------------------

Therapeutic Research Center. (2024). Vitamin B ₁₂ . Retrieved from Natural Medicines website	Vitamin B ₁₂	RDA 2.4mcg	NA	Orally, vitamin B12 is also used orally for treating hyperhomocysteinemia, Effectiveness Taking vitamin B12 orally in combination with folic acid, and sometimes with pyridoxine (vitamin B6), can reduce serum concentrations of homocysteine.	Primary supporting
Association of Naturopathic Practitioners. (2020). Vitamin B ₁₂ . Retrieved from: Herb Drug Nutrient.	Vitamin B ₁₂	RDI 2.4mcg	NA	Vitamin B12 is essential for the synthesis of fatty acids in normal blood cells. Deoxyadenosylcobalamin is essential for the conversion of L-methylmalonyl-CoA to succinyl-CoA which plays a part in energy production from lipids and proteins and in haemoglobin synthesis. Vitamin B12 may reduce homocysteine. Methylcobalamin and the folate-dependent enzyme, methionine synthase is essential for the metabolism of homocysteine to methionine and may thereby reduce the risk of cardiovascular disease.	Primary supporting

INDICATION 3							
Indication	Evidence reference details	Ingredient	Dosage	Patient population	Summary of findings	Balance of evidence	
		Plant/animal part and preparation	Daily dosage, frequency & method	Subject, characteristics, health condition, ages, gender, ethnicity	Include enough information to demonstrate relevance and study outcomes. Any justifications from table 4d of Checklist 4 should be included here.	'Primary supporting', 'Secondary supporting'	

 Maintain/su pport nervous system health Maintain/su 	Health Canada Monographs, Health Canada, 202	Vitamin B ₁₂	0.14 – 1000mcg	NA	 Helps in energy metabolism in the body. Helps to maintain healthy metabolism. 	Primary supporting
pport nervous system function	GlobinMed, Global Information H ub on Integrated Medicine, 2021	Vitamin B ₁₂	RDI 4mcg	NA	Biochemical Pathways Vitamin B ₁₂ demethylates methyltetrahydrofolate to generate tetrahydrofolate, necessary in the synthesis of DNA. This means B ₁₂ plays a role in the replication of the genetic code and is a growth factor in all cells of the body. Nervous System Required for the synthesis of myelin, the insulation around nerves. It plays a major role in the functioning and maintenance of the nervous system.	Primary supporting

U.S.	Vitamin B ₁₂	RDA 2.4mcg	NA	Vitamin B12 is required for proper	Primary
Department of Health and Human Services. (2024). Retrieved				neurological function. Vitamin B12 functions as a cofactor for methionine synthase and L-methylmalonyl-CoA mutase. Methionine synthase catalyses the	supporting
from National Institute of Health Office of Dietary Supplements website				conversion of homocysteine to methionine. Methionine is required for the formation of S-adenosylmethionine, a universal methyl donor for almost 100 different substrates, including DNA, RNA, hormones, proteins, and lipids. L-methylmalonyl-CoA mutase converts L-methylmalonyl-CoA to	
				succinyl-CoA in the degradation of propionate, an essential biochemical reaction in fat and protein metabolism.	

Braun, L., & Cohen, M. (2015). Vtamin B ₁₂ . In Herbs & Natural Supplements. An evidencebased guide (4th ed., pp. 1091-1101). Chatswood, NSW: Elsevier Australia.	Vitamin B ₁₂	RDI 2.4mcg	NA	Important cofactor Vitamin B ₁₂ is essential for the normal function of all cells. It affects cell growth and replication, the metabolism of carbohydrates, lipids and protein and is involved in fatty acid and nucleic acid synthesis. Nervous system Vitamin B ₁₂ is involved in the synthesis of protein structures in the myelin sheath and nerve cells. As methylation is required for the production of myelin basic protein, a reduction in B ₁₂ and SAMe will result in demyelination of peripheral nerves and the spinal column (subacute combined degeneration.	Primary supporting
Gaby, A. (2017). Vitamin B ₁₂ . In Nutritional Medicine (2nd ed., pp. 94-100). Concord, NH: Fritz Perlberg Publishing.	Vitamin B ₁₂	RDI 2.4mcg	NA	Biochemistry Vitamin B ₁₂ is involved in the functioning of the nervous system and immune system.	Primary supporting

Associa	tion Vitamin B ₁₂	RDI 2.4mcg	NA	Vitamin B12 is essential for the	Primary
of				synthesis of fatty acids in myelin.	supporting
Naturop	pathic				
Practitio	ners.				
(2020).					
Vitamín	B ₁₂ .				
Retrieve	ed				
from: He	erb				
Drug					
Nutrient	t.				

INDICATION 4								
Indication		Evidence reference details	Ingredient	Dosage	Patient population	Summary of findings	Balance of evidence	
			Plant/animal part and preparation	Daily dosage, frequency & method	Subject, characteristics, health condition, ages, gender, ethnicity	Include enough information to demonstrate relevance and study outcomes. Any justifications from table 4d of Checklist 4 should be included here.	'Primary supporting', 'Secondary supporting'	
•	Helps preve nt dietar y Vitam in B ₁₂	Health Canada Monographs, Health Canada, 202	Vitamin B ₁₂	0.14 – 1000mcg	NA	 Helps in energy metabolism in the body. Helps to maintain healthy metabolism. Helps to prevent vitamin B₁₂ deficiency. Helps to maintain the body's ability to metabolize nutrients. 	Primary supporting	

defici ency Maint ain/su pport Vitam in B ₁₂ levels in the body Vitam in B ₁₂ aids/a ssists/ helps meta	GlobinMed, Global Information H ub on Integrated Medicine, 2021	Vitamin B ₁₂	RDI 4mcg	NA	Biochemical Pathways Primarily functions as a methyl donor, transferring methyl groups in the following: Vitamin B ₁₂ demethylates methyltetrahydrofolate to generate tetrahydrofolate, necessary in the synthesis of DNA. This means B ₁₂ plays a role in the replication of the genetic code and is a growth factor in all cells of the body. Hydrogen Carrier Functions as a hydrogen carrier in hydrogen transfer reactions. Metabolism Involved in various aspects of protein fat and carbohydrate	Primary supporting
					Involved in various aspects of protein, fat, and carbohydrate metabolism.	

m of protein ns, carbo hydra tes and fats • Aid/a ssist/ helps protein n synth esis in the body Mathian and body Mathian	
---	--

Col (20 Vta	aun, L., & hen, M. 015). amin B ₁₂ . In	Vitamin B ₁₂	RDI 2.4mcg	NA	Main Actions Important cofactor Vitamin B ₁₂ is essential for the	Primary supporting
Nat Sup An bas	erbs & ntural pplements. n evidence- sed guide				normal function of all cells. It affects cell growth and replication, the metabolism of carbohydrates, lipids and protein and is involved in fatty acid and nucleic acid synthesis.	
109 Cha NS Elsa	h ed., pp. 91-1101). atswood, SW: sevier istralia.				Antioxidant capacity Recent studies have identified that vitamin B ₁₂ and its cobalamin-based derivatives are powerful antioxidants at pharmacological concentrations.	
					Clinical Use Deficiency: treatment and prevention Traditionally, vitamin B ₁₂ supplementation has been used to treat deficiency or prevent it in conditions such as pernicious anaemia and atrophic gastritis, but special consideration should be given to the elderly, who are at high risk.	

Gaby, A. (2017). Vitamin B ₁₂ . In Nutritional Medicine (2nd ed., pp 94-100). Concord, Ni Fritz Perlber Publishing.	:	RDI 2.4mcg	NA	Biochemistry Vitamin B ₁₂ plays a role in DNA synthesis, red blood cell formation, homocysteine metabolism, and synthesis of S-adenosylmethionine. It is involved in the functioning of the nervous system and immune system.	Primary supporting
Gropper, S., Smith, J., & Carr, T. (2018). Water soluble vitamins: Vitamin B ₁₂ . In Advanced Nutrition and Human Metabolism (7th ed., pp. 351-358). Boston: Cengage Learning.		RDA 2.4mcg	NA	Functions and Mechanisms of Action Two enzymatic reactions requiring vitamin B12 have been recognized in humans. One of these reactions requires methylcobalamin as a coenzyme for methionine synthase, and the other relies on adenosylcobalamin as a coenzyme for L-methylmalonyl-CoA mutase. These reactions facilitate nutrient metabolism and energy production, as well as indirectly (via interactions with folate) the synthesis of purines and pyridimidines for use in nucleic acids. Two reactions are responsible for converting homocysteine to methionine. One does not require vitamin B12. The other reaction requires methylcobalamin as a coenzyme for methionine synthase (also called homocysteine methyltransferase).	Primary supporting

Therapeutic Research Center. (2024). Vitamin B ₁₂ . Retrieved from Natural Medicines website	Vitamin B ₁₂	RDA 2.4mcg	NA	Orally, vitamin B12 is used for preventing and treating vitamin B12 deficiency. Effectiveness Administering vitamin B12 orally, intramuscularly, or intranasally is effective for preventing and treating vitamin B12 deficiency. It is commonly believed that only intramuscular vitamin B12 is effective for treating vitamin B12 deficiency. However, clinical research shows that oral therapy is as effective as intramuscular administration. Older adults who take oral vitamin B12 supplements in doses of 25-37.5 mcg daily are more likely to have normal vitamin B12 levels than those who do not take supplements.	Primary supporting
Association of Naturopathic Practitioners. (2020). Vitamin B ₁₂ . Retrieved from: Herb Drug Nutrient.	Vitamin B ₁₂	RDI 2.4mcg	NA	Vitamin B12 is essential for the synthesis of fatty acids in myelin, normal blood cells and in the synthesis of DNA with folate. Deoxyadenosylcobalamin is essential for the conversion of L-methylmalonyl-CoA to succinyl-CoA which plays a part in energy production from lipids and proteins and in haemoglobin synthesis.	Primary supporting