

Evidence Package Riboflavin (B2)

Table of Contents

Table 6a: Executive Summary of Therapeutic Indications	3
Table 6b: Evidence Summary for Scientific Indications	5
INDICATION 1	
INDICATION 2	
INDICATION 3	
INDICATION 4	25
INDICATION 5	37

Table 6a: Executive Summary of Therapeutic Indications

Indication identifier	System targeted	Therapeutic indication	Required dosage	Specific/ Non-specific
RIBOFLAVIN 1	General health or body parts	 Maintain/support general health and wellbeing Maintain /support energy levels Maintain/support body tissue repair/regeneration Maintain/support eye health Antioxidant/Reduce free radicals formed in the body Helps reduce/decrease free radical damage to body cells Maintain/support natural liver cleansing/detoxification processes Maintain/support hair growth Maintain/support natir health Maintain/support nail health/strength/thickness 	1.3 mg	Non specific
RIBOFLAVIN 2	Cardiovascular system	Aid/assist healthy red blood cell production	1.3 mg	Non-specific
RIBOFLAVIN 3	Immune system	 Maintain/support healthy immune system function Maintain/support immune system health 	1.3 mg	Non specific

RIBOFLAVIN 4	Nutrition	 Helps prevent dietary (state vitamin/mineral/nutrient [riboflavin]) deficiency Maintain/support (state vitamin/mineral/nutrient [riboflavin]) levels in the body Aid/assist/helps metabolism of (state vitamin/mineral/nutrient [carbohydrates, lipids, proteins]) 	1.3 mg	Non specific
RIBOFLAVIN5	Skin	 Maintain/support skin health Maintain/support skin repair/healing/regeneration in healthy individuals 	1.3 mg	Non specific

Table 6b: Evidence Summary for Scientific Indications

INDICATION 1							
Indication	Evidence reference details	Ingredient	Dosage	Patient population	Summary of findings	Balance of evidence	
		Plant/animal part and preparation	Daily dosage, frequency & method	Subject, characteristics, health condition, ages, gender, ethnicity	Include enough information to demonstrate relevance and study outcomes. Any justifications from table 4d of Checklist 4 should be included here.	'Primary supporting', 'Secondary supporting'	

 Maintain/support general health and wellbeing Maintain /support energy levels Maintain/support eye health Maintain/support body tissue repair/regenerati on Antioxidant/Redu ce free radicals formed in the body Helps reduce/ decrease free 	Health Canada Monographs, Health Canada, 202 3	Riboflavin	1.1-1.3 mg	N/A	 Helps in energy metabolism and in tissue formation. Helps to maintain healthy mucous membranes. Helps to maintain normal red blood cells. Helps to maintain normal metabolism of iron. Helps to prevent riboflavin deficiency. Helps to maintain the body's ability to metabolize nutrients. 	Primary supporting
---	---	------------	------------	-----	---	-----------------------

 radical damage to body cells Maintain/support natural liver cleansing/detoxif ication processes Maintain/support hair growth Maintain/support hair health Maintain/support nail health/ strength/thicknes s 	GlobinMed, Global Information H ub on Integrated Medicine, 2021	Riboflavin	1.1-1.3 mg	N/A	Riboflavin is essential for normal growth and development, reproduction, physical performance and well being. Vitamin B ₂ is water- soluble and, like other B vitamins, it is not appreciably stored and must be supplied daily. Riboflavin combines with phosphoric acid to become part of two important flavin co-enzymes, FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide). FMN and FAD are known to bind to over 100 flavoprotein enzymes. These riboflavin-containing enzymes, which function as hydrogen carriers, catalyze many of the oxidation-reduction reactions in cells.	Primary supporting
					Functions in the body Fatty Acids/Amino Acids/Pyruvic Acids Riboflavin-containing enzymes play roles in fatty acid synthesis, beta- oxidation of fatty acids, deamination of amino acids, and conversion of pyruvic acid to acetyl coenzyme A. Energy Production Riboflavin plays a role in the conversion of carbohydrates to ATP in the production of energy. Antioxidant Activity	

				has antioxidant activity, both by itself and as part of the enzyme glutathione reductase Growth is necessary for growth and reproduction and the healthy growth of skin, hair and nails. Riboflavin is part of glutathione reductase, which is an important enzyme that helps provide antioxidant protection in the eyes.	
U.S. Department of Health and Human Services. (2022). Retrieved from National Institute of Health Office of Dietary Supplements website	Riboflavin	1.1-1.3 mg	N/A	Riboflavin is an essential component of two major coenzymes, flavin mononucleotide (FMN; also known as riboflavin-5'- phosphate) and flavin adenine dinucleotide (FAD). These coenzymes play major roles in energy production; cellular function, growth, and development; and metabolism of fats, drugs, and steroids. he conversion of the amino acid tryptophan to niacin (sometimes referred to as vitamin B3) requires FAD. Similarly, the conversion of vitamin B6 to the coenzyme pyridoxal 5'-phosphate needs FMN. In addition, riboflavin helps maintain normal levels of homocysteine, an amino acid in the blood	Primary supporting

Braun, L., &	Riboflavin	<70 yrs:	N/A	Riboflavin is involved in many	Primary
Cohen, M.		1.1-1.3 mg		different biological processes and	supporting
(2015).		>70 yrs:		is essential for maintaining health.	
Riboflavin. Ir	1	1.3-1.6mg		The flavoproteins are central to	
Herbs &				carbohydrate, protein and lipid	
Natural				metabolism, are involved in ATP	
Supplement	s.			production, and are essential for	
An evidence				immune function, tissue repair	
based guide				processes and general growth	
(4th ed., pp.				(required for healthy growth of skin,	
1062-69).				hair and nails). Riboflavin activates	
Chatswood,				vitamin B6 and folate, which are	
NSW:				essential cofactors in	
Elsevier				neurotransmitter formation and	
Australia.				metabolism. Riboflavin exerts in	
				functions as two flavin enzymes	
				(flavoenzymes), FAD and FMN.	
				These coenzymes are essential in	
				carbohydrate, amino acid and lipid	
				metabolism. FMN and FAD function	
				as coenzymes in cellular	
				antioxidant protection and for a	
				variety of oxidative enzymes	
				systems. Riboflavin increases	
				intracellular levels of reduced	
				glutathione and maintains the	
				glutathione redox cycle as a part of	
				the FAD-dependent enzyme	
				glutathione reductase. Clinical uses	
				include wound healing. Riboflavin	
				deficiency lengthens the time to	
				epithelialisation of wounds and	
				slows the rate of wound	
				contraction. Glutathione reductase	
				is a key enzyme involved in lens	
				protection. Riboflavin levels	
				indirectly influence glutathione	

	reductase activity, increasing the ability of the lens to deal with free radical formation. Riboflavin, as FAD, is the cofactor for methylenetetrahydrofolate reductase (MTHFR) a key enzyme in the folate activation pathway, catalysing the interconversion of 5,10-methylene tetrahydrofolate and 5-methyltetrahydrofolate- converting folate into its active form. Fetal and embryonic development require adequate	
	riboflavin status.	

Institu Ribof	lavin ved July	Adults: 1.1-1.3 mg	coenzymes, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). They act as electron carriers in a number of oxidation-reduction (redox) reactions involved in energy production and in numerous metabolic pathways. Riboflavin deficiency can affect multiple pathways in the	Primary supporting
			metabolism of vitamin B6, folate, niacin, and iron. Riboflavin deficiency has been linked to preeclampsia in pregnant women. The risk of preeclampsia has recently been associated with the presence of a genetic variant (C677T) in the methylenetetrahydrofolate reductase (MTHFR) gene. This gene codes for the MTHFR enzyme, which is FAD-dependent. Riboflavin (in the form, FAD) is required as a cofactor for the key folate-metabolizing enzyme, MTHFR. A low status of riboflavin status may interfere with the metabolism of folate, particularly in individuals homozygous for the	
			MTHFR C677T gene variant; these individuals exhibit a higher risk of cardiovascular disease (CVD). Emerging evidence from intervention trials supports a protective role for riboflavin against hypertension in individuals with the	

MTHFR 677TT genotype. Riboflavin
deficiency alters iron metabolism.
Although the mechanism is not
clear, research in animals suggests
that riboflavin deficiency may impair
iron absorption, increase intestinal
loss of iron, and/or impair iron
utilization for the synthesis of
hemoglobin (Hb). In humans,
improving riboflavin nutritional
status has been found to increase
circulating Hb levels. Correction of
riboflavin deficiency in individuals
who are both riboflavin and iron
deficient improves the response of
iron-deficiency anemia to iron
therapy. Anemia during pregnancy,
a worldwide public health problem,
is responsible for considerable
perinatal morbidity and mortality.
The management of maternal
anemia includes the
supplementation with iron alone or
iron in combination with folic acid,
and it has been considered that
riboflavin supplementation could
enhance the iron-folic acid
supplementation. Randomized,
double-blind intervention trials
conducted in pregnant women with
anemia in Southeast Asia showed
that a combination of folic acid,
iron, vitamin A, and riboflavin
improved Hb levels and decreased
anemia prevalence compared to
the iron-folic acid supplementation
alone.
diotici

Gaby, A. (2017). Riboflavin. In <i>Nutritional</i> <i>Medicine</i> (2nd ed., pp. 68-71). Concord, NH: Fritz Perlberg Publishing .	Riboflavin	1.1-1.3 mg	N/A	Riboflavin (vitamin B_2) is a water- soluble B vitamin. It is found in the body primarily in its biologically active coenzyme forms, flavin mononucleotide (also called riboflavin 5'-phosphate) and flavin adenine dinucleotide (FAD). As a component of FAD, riboflavin is involved in the electron-transport chain and, consequently, in the synthesis of adenosine triphosphate (ATP), the body's main storage form of energy. Riboflavin also participates in various oxidation-reduction reactions and is a cofactor for glutathione reductase, which generates glutathione, an important antioxidant. In addition, riboflavin is involved in iron utilization and in the conversion of vitamin B_6 to its biologically active form, pyridoxal phosphate	Primary supporting
---	------------	------------	-----	---	-----------------------

	ropper, S.,	Riboflavin	1.1-1.3 mg	N/A	FMN and FAD function as	Primary
	nith, J., & arr, T.				coenzymes for a variety of oxidative enzymes and remain	supporting
	018). Water				bound to the enzymes dur-ing the	
1	oluble				oxidation-reduction reactions.	
	tamins. In				Flavins can act as oxidizing agents	
	dvanced				because of their ability to accept a	
	utrition and				pair of hydrogen atoms	
	uman				Functions in the body	
	<i>etabolism</i> th ed., pp.				Nutrient Metabolism and Energy Production	
	21-25).				Flavoproteins exhibit a wide range	
	oston:				of redox potentials and therefore	
	engage				can play a variety of roles in	
	earning.				intermediary metabolism. Examples	
					include the electron transport	
					chain,	
					In vitamin B6 metabolism,	
					pyridoxine phosphate oxidase—	
					which converts pyridoxamine phosphate (PMP) and pyridoxine	
					phosphate (PNP) to pyridoxal	
					phosphate (PLP), the primary	
					coenzyme form of vitamin B6 is	
					dependent upon FMN	
					L-amino oxidase uses FMN in the	
					dehydrogenation of L-amino acids	
					to imino acids.	
					In the oxidative decarboxylation of	
					pyruvate and a-ketoglutarate, FAD serves as an intermediate electron	
					carrier, with NADH being the final	
					reduced product.	
					Succinate dehydrogenase is an	
					FAD flavoprotein that removes	
					electrons from succinic acid to	
					form fumarate, and that forms	

	FADH2 from FAD). The electrons
	are then passed into the electron
	transport chain by coenzyme Q
	In fatty acid beta-oxidation, acyl-
	CoA dehydrogenasesrequire FAD
	Sphinganine oxidase, in
	sphingosine synthesis, requires
	FAD.
	As a coenzyme for an oxidase
	such as xanthine oxidase
	involved in purine catabolism,
	Similarly, aldehyde oxidase using
	FAD reacts with alde-hydes such as
	pyridoxal (vitamin B6)—to form
	pyridoxic acid—and retinal (a form
	of vitamin A)—to produce retinoic
	acid—while also passing
	electrons to oxygen and
	generating hydrogen peroxide.
	Synthesis of a folate as 5-methyl
	THF requires FADH2
	A step in the synthesis of niacin
	from tryptophan that is catalyzed
	by kynureninase monooxygenase
	requires FAD
	In choline catabolism, several
	dehydrogenases require FAD
	Some neurotransmitters (such as
	dopamine) and other amines
	(tyramine and histamine) require
	FAD-dependent monoamine
	oxidase for metabolism.
	Reduction of the oxidized form of
	glutathione (GSSG) to its reduced
	form (GSH) depends on FAD-
	dependent glutathione reductase
	dependent gluddhone reddedde

	Ribonucleotide reductase catalyzes the conversion of ribonucleotides to deoxyribonucleotides), which are needed for DNA synthesis. Hydrogen peroxide production from singlet oxygen (O12, which is derived from, e.g., activated white blood cells) and water via an antibody-catalyzed water oxidation pathway also appears to require riboflavin Beta-oxidation of fatty acids in the mitochondria is catalyzed by
	the mitochondria is catalyzed by several acyl-CoA dehydrogenases, which require FAD as coenzymes

Therapeutic Research Center. (2023). Riboflavin. Retrieved from Natural Medicines website	Riboflavin	1.1-1.3 mg	N/A	Riboflavin is a B vitamin, which is involved in vital metabolic processes in the body and is necessary for normal cell function, growth, and energy production. In the body, riboflavin is converted to flavin adenine dinucleotide (FAD) and flavin mononucleotide (FAD) and flavin mononucleotide (FMN). FAD and FMN are coenzymes that attach to proteins (flavoproteins) to activate them and play a role in many metabolic processes in the body. Examples include methylenetetrahydrofolate reductase (MTHFR), glutathione reductase, and kynurenine mono- oxygenase. Riboflavin is needed for processes involved with activation of vitamin B6, creation of niacin, activity of the adrenal gland, formation of red blood cells, antibody production, mitochondrial activity, growth, digestion, eye health, etc. The riboflavin-derived FAD is a cofactor for the MTHFR enzyme involved in the remethylation of homocysteine to methionine. FAD is a cofactor for glutathione reductase activity, and the increased glutathione levels	Primary supporting
				the increased glutathione levels produced by this enzyme may play a role in cataract prevention.	

Association of Naturopathic Practitioners. (2020). Riboflavin. Retrieved from: Herb Drug Nutrient.	Riboflavin	1.1-1.6 mg	N/A	Riboflavin is an essential component of the flavocoenzymes flavin adenine dinucleotide (FAD) and flavin mononucleotide (FAN) involved with the metabolism of fats, proteins and carbohydrates. FAD is essential for energy production in the respiratory chain in the mitochondria. Flavocoenzymes also play a role in cytochrome P450 detoxification of drugs and xenobiotics. FAD is also necessary for the endogenous antioxidant glutathione and xanthine oxidase responsible for uric acid metabolism. Riboflavin deficiency may cause soreness and inflammation of the oral cavity, angular stomatitis, seborrheic dermatitis, growth disturbances and increased risk of eclampsia of pregnancy.	Primary supporting
---	------------	------------	-----	---	-----------------------

Higdon, J. An	Riboflavin	1.1-1.3 mg	N/A	Living organisms derive most of	Primary
Evidence		eg		their energy from oxidation-	supporting
Based				reduction reactions, which are	supporting
Approach to				processes that involve the transfer	
Vitamins and				of electrons. Flavocoenzymes	
Minerals,				participate in redox reactions in	
Thieme,					
				numerous metabolic pathways.	
2003. pp. 30-				They are critical for the metabolism	
35.				of carbohydrates, fats and proteins.	
				FAD is part of the electron transport	
				chain, which is central to energy	
				production. Together with	
				cytochrome P450, flavocoenzymes	
				also participate in the metabolism	
				of drugs and toxins. Glutathione	
				reductase is an FAD-dependent	
				enzyme that participates in redox	
				cycle of glutathione. Xanthine	
				oxidase is another FAD-dependent	
				enzyme, which catalyzes the	
				oxidation of hypoxanthine and	
				xanthine to uric acid. Uric acid is	
				one of the most effective water	
				soluble antioxidants in the blood.	
				Methylene tetrahydrofolate	
				reductase (MTHFR) is an FAD-	
				dependent enzyme that plays an	
				important role in maintaining the	
				specific folate coenzyme required	
				to form methionine from	
				homocysteine. Disease prevention	
				includes cataracts: A cross-	
				sectional study of 2900 Australian	
				men and women, aged 49 years	
				and older, found that those in the	
				highest quintile of riboflavin intake	
				were 50% less likely to have	

		cataracts than those in the lowest	
		quintile.	

INDICATION 2	INDICATION 2								
Indication	Evidence reference details	Ingredient	Dosage	Patient population	Summary of findings	Balance of evidence			
		Plant/animal part and preparation	Daily dosage, frequency & method	Subject, characteristics, health condition, ages, gender, ethnicity	Include enough information to demonstrate relevance and study outcomes. Any justifications from table 4d of Checklist 4 should be included here.	'Primary supporting', 'Secondary supporting'			
 Aid/assist healthy red blood cell production 	Health Canada Monographs , Health Canada, 20 23	Riboflavin	1.1-1.3 mg	N/A	Helps to maintain normal red blood cells.	Primary supporting			

Linus Pauling	Riboflavin	Adults: 1.1- 1.3 mg	Riboflavin deficiency can affect multiple pathways in the	Primary supporting
Institute Riboflavin		Pregnancy: 1.4 mg	metabolism of vitamin B6, folate, and iron.	
retrieved July 2024		1.4 mg Lactation: 1.6 mg	Riboflavin deficiency alters iron metabolism. Although the mechanism is not clear, research in animals suggests that riboflavin deficiency may impair iron absorption, increase intestinal loss of iron, and/or impair iron utilization for the synthesis of hemoglobin (Hb). In humans, improving riboflavin nutritional status has been found to increase circulating Hb levels. Correction of riboflavin deficiency in individuals who are both riboflavin and iron deficient improves the response of iron- deficiency anemia to iron therapy. Anemia during pregnancy, a worldwide public health problem, is responsible for considerable perinatal morbidity and mortality. The management of maternal	
			anemia includes the supplementation with iron alone	

				or iron in combination with folic acid, and it has been considered that riboflavin supplementation could enhance the iron-folic acid supplementation.	
Therapeutic Research Center. (2023). Riboflavin. Retrieved from Natural Medicines website	Riboflavin	1.1-1.3 mg	N/A	Riboflavin is needed for processes involved with the formation of red blood cells.	Primary supporting

INDICATION 3

Indication	Evidence reference details	Ingredient	Dosage	Patient population	Summary of findings	Balance of evidence
		Plant/animal part and preparation	Daily dosage, frequency & method	Subject, characteristics, health condition, ages, gender, ethnicity	Include enough information to demonstrate relevance and study outcomes. Any justifications from table 4d of Checklist 4 should be included here.	'Primary supporting', 'Secondary supporting'

 Maintain/support healthy immune system function Maintain/support immune system health 	Wisneski L The Professional Reference to Conditions Herbs and Supplements, 'Vitamin B2 (Riboflavin)' Integrative Medicine Communicati ons Access 2000	Riboflavin	Adult: 1.0-1.3 mg	N/A	Riboflavin is necessary for normal development and repair of the immune system. Therapeutic uses include enhances immune function.	Primary supporting
--	--	------------	----------------------	-----	---	-----------------------

Herbs & Natural Supplements. An evidence- based guide (4th ed., pp. 1062-69). Chatswood, NSW: Elsevier Australia.

INDICATION 4	INDICATION 4						
Indication	Evidence reference details	Ingredient	Dosage	Patient population	Summary of findings	Balance of evidence	
		Plant/animal part and preparation	Daily dosage, frequency & method	Subject, characteristics, health condition, ages, gender, ethnicity	Include enough information to demonstrate relevance and study outcomes. Any justifications from table 4d of Checklist 4 should be included here.	'Primary supporting', 'Secondary supporting'	
 Helps prevent dietary (state vitamin/mineral/ nutrient [riboflavin]) deficiency Maintain/suppo rt (state 	Health Canada Monographs , Health Canada, 20 23	Riboflavin	1.1-1.3 mg	N/A	 Helps to maintain normal metabolism of iron. Helps to prevent riboflavin deficiency. Helps to maintain the body's ability to metabolize nutrients. 	Primary supporting	

(state vitamin/mineral/ nutrientfrom National Institute of [carbohydrates, lipids, proteins])National Institute of Healthcoenzymes play major roles in the metabolism of fats. The conversion of the amino acid tryptophan to niacin (sometimes referred to as vitamin B3) requires FAD. Similarly, the conversion of vitamin B6 to the coenzyme pyridoxal 5'- phosphate needs FMN.	vitamin/mineral/ nutrient [carbohydrates,	National Institute of Health Office of Dietary Supplement	Riboflavin	1.1-1.3 mg	N/A	conversion of the amino acid tryptophan to niacin (sometimes referred to as vitamin B3) requires FAD. Similarly, the conversion of vitamin B6 to the coenzyme pyridoxal 5'-	Primary supporting
---	---	--	------------	------------	-----	--	-----------------------

Braun, L., & Cohen, M. (2015). Riboflavin. In <i>Herbs & Natural</i> <i>Supplement</i> <i>s. An</i> <i>evidence</i> - <i>based guide</i> (4th ed., pp. 1062-69). Chatswood, NSW: Elsevier Australia.		<70 yrs: 1.1-1.3 mg >70 yrs: 1.3-1.6mg	N/A	Riboflavin is involved in many different biological processes and is essential for maintaining health. The flavoproteins are central to carbohydrate, protein and lipid metabolism. Riboflavin activates vitamin B6 and folate, which are essential cofactors in neurotransmitter formation and metabolism. Riboflavin exerts in functions as two flavin enzymes (flavoenzymes), FAD and FMN. These coenzymes are essential in carbohydrate, amino acid and lipid metabolism. Riboflavin, as FAD, is the cofactor for methylenetetrahydrofolate reductase (MTHFR) a key enzyme in the folate activation pathway, catalysing the interconversion of 5,10- methylene tetrahydrofolate and 5-methyltetrahydrofolate- converting folate into its active	Primary supporting
--	--	---	-----	--	-----------------------

Gaby, A. (2017). Riboflavin. In <i>Nutritional</i> <i>Medicine</i> (2nd ed., pp. 68-71). Concord, NH: Fritz Perlberg Publishing.	Riboflavin	1.1-1.3 mg	N/A	Riboflavin is involved in iron utilization and in the conversion of vitamin B ₆ to its biologically active form, pyridoxal phosphate	Primary supporting
---	------------	------------	-----	--	-----------------------

Linus	Riboflavin	Adults: 1.1-	Riboflavin deficiency can affect Print	mary
Pauling		1.3 mg	,	oporting
Institute		_	metabolism of vitamin B6, folate,	
Riboflavin			niacin, and iron. Although the	
rationed			mechanism is not clear, research	
retrieved			in animals suggests that	
July 2024			riboflavin deficiency may impair	
			iron absorption, increase	
			intestinal loss of iron, and/or	
			impair iron utilization for the	
			synthesis of hemoglobin (Hb). In	
			humans, improving riboflavin	
			nutritional status has been found	
			to increase circulating Hb levels.	
			Correction of riboflavin	
			deficiency in individuals who are	
			both riboflavin and iron deficient	
			improves the response of iron-	
			deficiency anemia to iron	
			therapy.	

Groppe Smith, Carr, T (2018). Water soluble vitamin Advand Nutritic and Hu Metabo (7th ed 321-25) Boston Cengay Learnin	J., & s. In ced in iman olism , pp. ge	1.1-1.3 mg	N/A	 Functions in the body Nutrient Metabolism and Energy Production Flavoproteins exhibit a wide range of redox potentials and therefore can play a variety of roles in intermediary metabolism. Examples include the electron transport chain, In vitamin B6 metabolism, pyridoxine phosphate oxidase—which converts pyridoxamine phosphate (PMP) and pyridoxine phosphate (PMP) and pyridoxal phosphate (PLP), the primary coenzyme form of vitamin B6 is dependent upon FMN L-amino oxidase uses FMN in the dehydrogenation of L-amino acids to imino acids. In the oxidative decarboxylation of pyruvate and a-ketoglutarate, FAD serves as an intermediate electron carrier, with NADH being the final reduced product. 	Primary supporting
--	---	------------	-----	---	-----------------------

Succinate dehydrogenase is an FAD flavoprotein that removes electrons from succinic acid to form fumarate, and that forms FADH2 from FAD). The electrons are then passed into the electron transport chain by coenzyme Q	
In fatty acid beta-oxidation, acyl- CoA dehydrogenasesrequire FAD	
Sphinganine oxidase, in sphingosine synthesis, requires FAD.	
As a coenzyme for an oxidase such as xanthine oxidase involved in purine catabolism,	
Similarly, aldehyde oxidase using FAD reacts with aldehydes such as pyridoxal (vitamin B6)— to form pyridoxic acid—and retinal (a form of vitamin A)— to produce retinoic acid—while also passing electrons to oxygen and generating hydrogen peroxide.	

Synthesis of a folate as 5-methyl THF requires FADH2
A step in the synthesis of niacin from tryptophan that is catalyzed by kynureninase monooxygenase requires FAD
In choline catabolism, several dehydrogenases require FAD
Some neurotransmitters (such as dopamine) and other amines (tyramine and histamine) require FAD-dependent monoamine oxidase for metabolism.
Reduction of the oxidized form of glutathione (GSSG) to its reduced form (GSH) depends on FAD-dependent glutathione reductase
Ribonucleotide reductase catalyzes the conversion of ribonucleotides to deoxyribonucleotides), which are needed for DNA synthesis.
Hydrogen peroxide production from singlet oxygen (O12, which

	is derived from, e.g., activated white blood cells) and water via an antibody-catalyzed water oxidation pathway also appears to require riboflavin
	Beta-oxidation of fatty acids in the mitochondria is catalyzed by several acyl-CoA dehydrogenases, which require FAD as coenzymes

Rese Cent (202 Ribo Retri from	23). oflavin. ieved n Natural licines	in 1.1-1.3 mg	N/A	In the body, riboflavin is converted to flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). FAD and FMN are coenzymes that attach to proteins (flavoproteins) to activate them and play a role in many metabolic processes in the body. Examples include methylenetetrahydrofolate reductase (MTHFR), glutathione reductase, and kynurenine mono-oxygenase. Riboflavin is needed for processes involved with activation of vitamin B6, creation of niacin. The riboflavin- derived FAD is a cofactor for the MTHFR enzyme involved in the remethylation of homocysteine to methionine. FAD is a cofactor for glutathione reductase activity, and the increased glutathione levels produced by this enzyme may play a role in	Primary supporting
				glutathione levels produced by this enzyme may play a role in cataract prevention.	

Association	Riboflavin	1.1-1.6 mg	N/A	Riboflavin is an essential	Primary
of				component of the	supporting
Naturopathi				flavocoenzymes flavin adenine	
с				dinucleotide (FAD) and flavin	
Practitioners				mononucleotide (FMN) involved	
. (2020).				with the metabolism of fats,	
Riboflavin.				proteins and carbohydrates.	
Retrieved				FAD is also necessary for the	
from: Herb				endogenous antioxidant	
Drug				glutathione and xanthine	
Nutrient.				oxidase responsible for uric acid	
				metabolism.	

ŀ	Higdon, J.	Riboflavin	1.1-1.3 mg	N/A	Flavocoenzymes are critical for	Primary
A	An Evidence				the metabolism of	supporting
E	Based				carbohydrates, fats and proteins.	
A	Approach to				Glutathione reductase is an	
1	Vitamins				FAD-dependent enzyme that	
6	and				participates in redox cycle of	
N	Minerals,				glutathione. Xanthine oxidase is	
Т	Thieme,				another FAD-dependent	
2	2003. pp.				enzyme, which catalyzes the	
3	30-35.				oxidation of hypoxanthine and	
					xanthine to uric acid. Methylene	
					tetrahydrofolate reductase	
					(MTHFR) is an FAD-dependent	
					enzyme that plays an important	
					role in maintaining the specific	
					folate coenzyme required to	
					form methionine from	
					homocysteine.	

INDICATION 5						
Indication	Evidence reference details	Ingredient	Dosage	Patient population	Summary of findings	Balance of evidence
		Plant/animal part and preparation	Daily dosage, frequency & method	Subject, characteristics, health condition, ages, gender, ethnicity	Include enough information to demonstrate relevance and study outcomes. Any justifications from table 4d of Checklist 4 should be included here.	'Primary supporting', 'Secondary supporting'

ort skin health ort skin repair eration in healthy	Health Canada Monographs, Health Canada, 202	Riboflavin	1.1-1.3 mg	N/A	Helps in tissue formation.	Primary supporting
	3					

Globin Global Informub on Integra Medici 2021	ation H ated	1.1-1.3 mg	N/A	Riboflavin is essential for normal growth and development. Functions in the body Growth is necessary for growth and reproduction and the healthy growth of skin, hair and nails.	Primary supporting
Humar Service (2022) Retriev	Ith and es. ved lational e of Office ary ements	1.1-1.3 mg	N/A	Riboflavin is an essential component of two major coenzymes, flavin mononucleotide (FMN; also known as riboflavin-5'- phosphate) and flavin adenine dinucleotide (FAD). These coenzymes play major roles in growth, and development	Primary supporting
	, M. Nvin. In & <i>ements.</i> <i>dence-</i> <i>guide</i> I., pp. 9). vood, er	<70 yrs: 1.1-1.3 mg >70 yrs: 1.3-1.6mg	N/A	Riboflavin is involved in many different biological processes and is essential for maintaining health. The flavoproteins are central to tissue repair processes and general growth (required for healthy growth of skin, hair and nails).	Primary supporting

Association of Naturopathic Practitioners. (2020). Riboflavin. Retrieved from: Herb Drug Nutrient.	Riboflavin	1.1-1.6 mg	N/A	Riboflavin deficiency may cause angular stomatitis, seborrheic dermatitis.	Primary supporting
---	------------	------------	-----	--	-----------------------